語音增強基於小腦模型控制器(A Speech Enhancement System Based on Cerebellar Model Articulation Controller) [In Chinese]
نویسندگان
چکیده
Traditionally, cerebellar model articulation controller (CMAC) is used in motor control, inverted pendulum robot, and nonlinear channel equalization. In this study, we investigate the capability of CMAC for speech enhancement. We construct a CMAC-based supervised speech enhancement system, which includes offline and online phases. In the offline phase, a paired noisy-clean speech dataset is prepared and used to train the parameters in a CMAC model. In the online phase, the trained CMAC model transforms the input noisy speech signals to enhanced speech signals with reduced noise components. To test the CMAC-based speech enhancement system, this study adopted three speech objective evaluation metrics, including perceptual evaluation of speech quality (PESQ), segmental signal-to-noise ratio (SSNR) and speech distortion index (SDI). A well-known traditional speech enhancement approach, minimum mean-square-error (MMSE) algorithm, was also tested performance for comparison. Experimental results demonstrated that CMAC provides superior performances to the MMSE method for all of the three objective evaluation metrics.
منابع مشابه
整合邊際資訊於鑑別式聲學模型訓練方法之比較研究 (A Comparative Study on Margin-Based Discriminative Training of Acoustic Models) [In Chinese]
鑑別式聲學模型訓練在近代自動語音辨識(Automatic Speech Recognition, ASR)中扮演 重要的角色。在許多基於不同思維且能有效地提昇辨識率的鑑別式聲學模型訓練方法陸 續被提出後,對於訓練方法的相關推廣與改進便如雨後春筍般地興起;而這些方法在本 質上,皆是在描述訓練語句與語音辨識器所產生對應詞圖(Word Graph)之間的關係。本 論文首先將統整與歸納近年來所發展的多種鑑別式聲學模型訓練方法,並以三種最具代 表性鑑別式訓練方法:最小化分類錯誤(Minimum Classification Error, MCE)、最大化交 互資訊(Maximum Mutual Information, MMI)、最小化音素錯誤(Minimum Phone Error, MPE)為範例,透過有系統地轉換與化解方程式,得到聲學模型訓練準則的共通表示函 數型態。我們可以發現到,對於...
متن کامل最小變異數調變頻譜濾波器於強健性語音辨識之研究 (A Study of Minimum Variance Modulation Filter for Robust Speech Recognition) [In Chinese]
本論文所探討的是語音特徵強健性技術,藉此改善雜訊環境下語音辨識的效能。我們利 用原始最小變異數調變濾波器法設計的環境失真目標函數,應用至求取濾波器之最佳頻 率響應上,進而發展出兩種特徵時間序列濾波器求取演算法,分別為基於最小變異數準 則之最小平方頻譜擬合法 (MV-LSSF)及基於最小變異數準則之強度頻譜內插法 (MV-MSI)。在這兩種方法中,利用我們所求得的濾波器之最佳頻率響應取代原始最小 平方頻譜擬合法(LSSF)與強度頻譜內插法(MSI)中所使用的濾波器,來得到欲逼近的目 標功率頻譜密度。從 Aurora-2 連續數字資料庫的實驗結果證實,這兩種基於最小變異 數準之調變頻譜正規化法,在各種雜訊環境下都優於傳統的兩種調變頻譜正規化法,而 得到更佳的辨識精確度。與基礎實驗結果相比較,MV-LSSF 與MV-MSI 所達到之相對 錯誤降低率分別為在 55.41%與 51.20%,顯...
متن کامل結合HMM 頻譜模型與ANN 韻律模型之國語語音合成系統 (A Mandarin Speech Synthesis System Combining HMM Spectrum Model and ANN Prosody Model) [In Chinese]
本論文研究了一種結合 HMM (hidden Markov model)頻譜模型與 ANN (articifical neural network )韻律模型的國語語音合成系統。在訓練階段,對各個訓練語料音框算出 DCC係數(discrete cepstrum coefficients),以作為頻譜特徵參數,接著對於一種音節的多 個發音,依 DTW (dynamic time warping)匹配出的頻譜演進路徑作分群,各群建立一個 HMM,並記錄各音節發音的文依性資訊。在合成階段,首先依據文依性資訊挑選出輸 入文句各音節的 HMM模型,接著判定音節 HMM的各個狀態為無聲、或有聲,然後使 用音長 ANN模型及狀態平均音長來決定 HMM各狀態應該產生的音框數。除了前人提 出的MLE(maximum likelihood estimate)法,我們另外研究二種內插方法來產生各音框的 D...
متن کامل改善以最小化音素錯誤為基礎的鑑別式聲學模型訓練於中文連續語音辨識之研究 (Improved Minimum Phone Error based Discriminative Training of Acoustic Models for Chinese Continuous Speech Reconigtion) [In Chinese]
متن کامل
基於音段式LMR 對映之語音轉換方法的改進 (Improving of Segmental LMR-Mapping Based Voice Conversion Methods) [In Chinese]
把一個來源語者(source speaker)的語音轉換成另一個目標語者(target speaker)的語音,這 種處理稱為語音轉換(voice conversion)[1, 2, 3],語音轉換可應用於銜接語音合成處理, 以獲得多樣性的合成語音音色。去年我們曾嘗試以線性多變量迴歸(linear multivariate regression, LMR)來建構一種頻譜對映(mapping)的機制[4],然後用於作語音轉換,希望 藉以改進傳統上基於高斯混合模型(Gaussian mixture model, GMM)之頻譜對映機制[3] 常遇到的一個問題,就是轉換出的頻譜包絡(spectral envelope)會發生過度平滑(over smoothing)的現象。我們經由實驗發現,音段式(segmental) LMR 頻譜對映機制不僅在平 均轉換誤差上可以比傳統 GMM 頻譜對映機...
متن کامل